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Abstract. The objective of this paper is to show that under a defined
multiplicative group, hyperbolic equilibrium points of a dynamical sys-
tem are preserved along the stable and unstable manifolds. As a conse-
quence, synchronization is also preserved for a master/slave system con-
figuration. The properties of this multiplicative group are determined
through the use of simultaneous Schur decomposition.
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1 Introduction

The study of synchronization preservation is relevant when it comes to chaos
control problems. As a matter of fact, the generalized synchronization can even
be derived for different systems by finding a diffeomorphic transformation such
that the states of the slave system can be written as a function of the states
of the master dynamics (see [1] and references therein). This result can be seen
as & timely contribution; however, in accordance to the goal of keeping intact
the stability under the transformation, a new question arises: how can stability
be preserved under transformations suffered by a dynamical system? An answer
to this question might allow us to ensure synchronization in strictly different
systems, in the sense that stability of the error dynamics is preserved under the
transformation. Preservation of stability for a class of nonlinear autonomous dy-
namical systems has been reported in the last decades [2]. The underlying idea
is to preserve the stability properties under transformation of finite-dimensional
dynamical systems. In the case of linear dynamical systems there exist several
results of stability preservation, for instance in [3-5], stability is asymptotically
preserved using transformations on rational functions in the frequency domain.
We present a simple extension of the Stable-Unstable Manifold Theorem, based
on the preservation of the signature of the real parts of the eigenvalues of an
underlying Jacobian matrix. The developed methodology is based on the use of
matrix theory tools, specifically, simultaneous Schur decomposition, the multi-
plicative group structure for triangular and diagonal matrices, the closure under
product of positive definite matrices and the eigenvalue sign-preservation for
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both real and complex matrices under matrix multiplication. The results on
preservation of structure, stability and synchronization based on the extension
of the stable-unstable manifold theorem show that stability and synchronization
can be preserved by transforming the linear part of the synchronization system.

2 Structure Preservation

In this section we present the necessary definitions and results that will allow
us to prove the main propositions of this paper. The results will be used in
section 4 where we will present some examples on preservation of synchronization

in dynamical systems.
Simultaneous Schur decompositions are defined as follows

Definition 1. The group of matrices Ai, A2, ..., An is said to be Schur si-

multaneously decomposable if there ezists a unitary matriz U, where UU T =
UTU = 1, such that
A =UTUT, Ap=UTU", ..., A, =UTUT
where T; is an upper triangular matriz.
For the following discussion consider the dynamical system described by
&= f(z)
where z € R® and f : R® — R" is a continuous differentiable function of its
argument. Let A = %zf be the Jacobian matrix associated with f evaluated
Zo

at an equilibrium point zo.
We introduce the following lemma in order to establish structure preservation

under matrix multiplication of simultaneous Schur decomposable matrices.
Lemma 1. The modifying matriz M, which is a simultaneous block diagonal
Schur decomposition of our dynamical system’s associated Jacobian matriz A,
will maintain the system’s structure.
Proof. We propose a matrix M that is a block diagonal simultaneous Schur
decomposition to our matrix A

A=UTUT

M=UDyUT
then our modified system will now become

MA=UDyUTUTAUT = UDyTAUT = UTAUT

Thus preserving the system’s structure.

This small proof enables us to pursue the definition of a multiplicative group
under the product of simultaneous Schur decomposable matrices. What follows
now is the explicit definition of the multiplicative group and its properties which
allow for preservation of stability. Using this group we present an extension of
the Stable-Unstable Manifold theorem (Proposition 1).
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3 Local Stable-Unstable Theorem Extension

The following proposition is a simple extension of the Local Stable-Unstable
Manifold Theorem for the action of group I'y on the matrix A and the vector
field f(z) where A, the system’s linear coefficients matrix, may be decomposed
as A=UTAUT, with T4 an upper triangular matrix and UUT = UTU = I. We
define Apq as the set of block diagonal matrices whose real coefficients are all

positive and the group I'y as
M =UDyUT

M € R™" |with Dy a block diagonal matrix
and Dy € Apg

I'y =

This proposition is an alternative result to proposition 4.2 presented in [6] using
simultaneous Schur decomposition and standard matrix product.

Proposition 1. Let E be an open subset of R™ containing the origin, let f €
CY(E), and let ¢, be the flow of the nonlinear system & = f(z) = Az + g(z).
Suppose that f(0) =0 and that A=Df(0) has k eigenvalues with negative real
part and n—k eigenvalues with positive real part, i. e., the origin is an hyperbolic
fized point. Then for each matriz M €Iy, as previously defined, there ezists a
k-dimensional differentiable manifold Sy, tangent to the stable subspace Ey; of
the linear system & = M Az at 0 such that for all t > 0, Oun,e(Sar) C Sur and
for all g € Sy,

Jim are(zo) =0,

where ¢ur,¢ be the flow of the nonlinear system & = M Az + g(z); and there ezists
an n—k dimensional differentiable manifold W), tangent to the unstable subspace
E}f of &= MAz at 0 such that for all t < 0, o (Wa) C War and for all
To € WIV[ )

Jm éag,e(z0) = 0.

An interesting property is that Proposition 1 is valid for each§ € C'(E) such
that & = f(z) = Az + g(z) and

lg()ll,

—0as ||z, — 0.
R Iz

In consequence, the set of matrices I'y generate the action of the group I'y on
the set of hyperbolic nonlinear systems (formally on the set of hyperbolic vector
fields f € CY(E)) & =f(z) = Az+g(x) withg € CY(E) and

AE{AERﬂXn

A=UTAUT with Ty
the Schur decomposition of A

satisfying the last condition, where U is a unitary matriz, this action is faithful
and free. The former action is generated by the action of the group I'y on the set
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A. The action preserves hyperbolic points in nonlinear systems and dimension
of the stable and unstable manifolds, i.e, an hyperbolic nonlinear system (: =
Az +7(x)) is mapped in an hyperbolic nonlinear system ( = MAz+34(x)), and
dim S = dim Sj; and dimW = dim W,

The following remarks are necessary for our proof

Remark 1. For a complex eigenvalue ax + by, belonging to A where a, < 0; it
is required that the eigenvalues of our complex modifying matrix M, a, + iby,

fulfill @ > 0 and *b; = +bg.

Remark 2. For a complex eigenvalue ax + ibx, belonging to A where a; > 0; it
is required that the eigenvalues of our complex modifying matrix M, a + ibk,

fulfill @, > 0 and +bx = Fbx.
Sketch of Proof:

1. Real Coefficients
Consider a matrix A of order n x n with decomposition 4 = U TAUT, where

T, is an upper triangular matrix with k negative real eigenvalues and n — k
positive real eigenvalues and U is & unitary n x n matrix, and the decom-
position M = UDyUT, M € Iy. By our proposition we carry out the
matrix product MA = UDpUTUTAUT = UDyTAUT. Looking at the
product of triangular and diagonal matrices Dps and T4 whose eigenvalues
are op = {\;} and o4 = {u:}, respectively. It is simple to observe that
the resulting matrix’s eigenvalues are precisely the individual products of
the original matrices’ eigenvalues; oara = {Ait;}. Since M € Iy is strictly
positive, then the matrix M A has k eigenvalues with negative real part and
n— k eigenvalues with positive real part. Since the dimensions of each man-
ifold have not changed, the result is a consequence of the Stable-Unstable
Manifold Theorem and Lemma 1.
2. Complex Coefficients

Consider the same conditions established in the previous point except that
the Jacobian and modifying matrices now have complex eigenvalues. Seeing
that the product of matrices Dys and T4 results in a block matrix of complex
eigenvalues we must adhere to what was previously established in remarks
1 and 2. For the case of the eigenvalues related to matrix A with negative
real part a; < 0 (remark 1) we have the following product of eigenvalues
(arxiby)(@rxiby) = ak&k_—bkbk:ti(akbk +a5by), since @, > 0 it follows that
axdy < 0 and subtracting byby, will keep the real part of the new eigenvalue
negative. Similarly in the case that a; > 0 (remark 2) we have (a) 4by ) (@
iby) = kg + bibi +1(arby, F axby), since ax > 0 it follows that arax > 0 and
adding bybx will keep the real part of the new eigenvalue positive. Then the
matrix M A has k eigenvalues with negative real part and n — k eigenvalues
with positive real part. Again the dimension of each manifold is the same
as the original system’s, therefore the result is again a consequence of the
Stable-Unstable Manifold Theorem and Lemma 1.
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The relevance of this proposition, which differs from that which appears in
(6], resides on the fact that critical hyperbolic equilibrium points are preserved.
As a consequence of this we established properties which allow us to preserve
the signature of the associated Jacobian matrix.

In sections 4 and 5 it will be shown, through example, that stability and syn-
chronization are preserved under modifications performed on dynamical systems
following the methodology of Proposition 1. This proposition on the extension
of the Stable-Unstable Manifold Theorem is different to other approaches for

stability and synchronization preservation such as (7] where Lyapunov’s indirect
method was employed.

Notice that given a particular nonlinear system, the stable and unstable
manifolds S and W are unique.

4 Preservation of Synchronization in Modified Systems

In this section we show how it is possible to preserve synchronization after a
system’s eigenvalues have been modified under the action of a class of transfor-
mation on the linear part of the nonlinear system.

Consider following n~-dimensional systems in a master-slave configuration,
where the master system is given by

&= Az + g(z)

and the slave system is

¥ =Ay+ f(y) +u(t)
where A € R™*" is a constant matrix, f, g: R® — R" are continuous nonlinear
functions and u € R™ is the control input. The problem of synchronization con-
sidered in this section is the complete-state exact synchronization. That is, the
master system and the slave system are synchronized by designing an appropri-
ate nonlinear state feedback control u(t) which is attached to the slave system
such that

Jim {ly(t) - =(&)] -0

where ||-|| is the Euclidean norm of a vector.

Considering the error state vector e = y —z € R, f(y) — g(z) = L(z,y) and
an error dynamics equation

é= Ae+ L(z,y) + u(t).

Based in the active control approach [8], to eliminate the nonlinear part of the
error dynamics, and choosing u(t) = Bu(t) — L(z, y), where B is a constant gain
matrix which is selected such that (4, B) be controllable, we obtain

€ = Ae+ Bu(t).

Notice that the original synchronization problem is equivalent to the problem of

stabilizing the zero-input solution of the last system by a suitable choice of the
state feedback control.
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Since the pair (A, B) is controllable one such suitable choice for state feedback
is a linear-quadratic state-feedback regulator [9], which minimizes the quadratic
cost function oo
J(u(t) = / (e()TQe(t) + v(®) T Ro(8)) dt

0

where Q and R are positive semi-definite and a positive definite weighting matri-
ces, respectively. The state-feedback law is given byv=—-Kewith K = R"1BTS
and S the solution to the Riccati equation

ATS+SA-SBR'BT+Q=0.
This state-feedback law renders the error equation to é = (A — BK)e, with

(A — BK) a Hurwitz matrix'. The linear quadratic regulator (LQR) is a well-
known design technique that provides practical feedback gains [9]. An interesting

property of (LQR) is robustness. '
Now consider M € Iy, and suppose that the following two n-dimensional

systems are chaotic
&= (MA)z+g(z)
§=(MA)y+ fy) +8()
for some f, g : R® — R™ continuous nonlinear functions and ¥ € R" is the

control input. We have that #(t) = —(MBK)e — L(z,y) stabilizes the zero
solution of the error dynamics system, the resultant system

é=(M(A-BK))e
is asymptotically stable. Notice that using K = R™*BT S, we obtain
é=(M(A-BR'B7S))e

The original control u(t) = —BKe — L(z,y) is preserved in its linear part by
the matrix product M (-) and the new control is given by #(t) = — (M BK)e —
L(z,y). Therefore, we can interpret the last procedure as one in which the con-
troller u(t) which achieves the synchronization in the two original systems is
preserved under the transformation M (-) so that %(t) achieves the synchroniza~
tion in the two resultant systems after the transformation. A similar procedure
is possible if we consider the transformation (-) M.

In general, under the transformations (4,g) — (M A,7), and under the hy-
pothesis of the existence of a constant state feedback U = — Kz which achieves
synchronization of the original chaotic systems, and also that the transformed
systems are chaotic, synchronization can be preserved.

The main contribution in this section does not deal with a better synchroniza-~
tion methodology, rather it deals with the fact that synchronization is preserved
when the underlying nonlinear chaotic dynamical system is altered in such a
way as to change its dynamical behavior yet preserving the topological structure
near the origin.

! A Hurwitz matrix is a matrix for which all its eigenvalues are such that their real
part is strictly less than zero
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5 Synchronization of a Chaotic Attractor

5.1 The Sprott O Attractor

The dynamical system of what is know as the Sprott O attractor, which has
chaotic behavior, is defined by

I =z

Ty =21 — 23 )

I3 =1z1+2.7z2+ 1113

In order to observe synchronization behavior we present two Sprott o attrac-

tors arranged as a master/slave configuration. The master and the slave systems
are almost identical, the only difference being that the slave system includes an
extra term (the control) which is used for the purpose of synchronization with
the master system. The initial conditions for the two systems are different.

Considering the errors e; = y; — 71, €2 = y, — 75, €3 = Y3 — T3, then the
error dynamics equations may be written as

€1 =ez+u;(t)
é2 =e1 —e3 + uy(t)
€3 =e; +2.7e2 + y1y3 — 173 + ua(t)

Introducing the Jacobian (4) and non-linear terms (L) matrices

010 0 uy (t)
A=1|10 -1}, L(z,y) = 0 yu=| up(t)
127 0 Y1Y3 — T3 ug(t)

and selecting the matrix B such that (4, B) is controllable: B = I. Now the LQR
controller is obtained by using weighting matrices Q =/ and R = BB = [.
The state feedback matrix is given by

1.3465 0.9819 —0.0894
K= 09819 1.7009 0.1709
—0.0894 0.1709 0.7881

In Fig. 1 the trajectories for the solution of the master system and slave
system are shown. In Fig. 2 the absolute value for the errors between the master
and slave systems are shown in a semi-logarithmic plot to emphasize the fact
that the error converges to zero and therefore the synchronization between the
master and slave systems is successfully achieved.

5.2 The Modified Sprott O Attractor

The following example shows the modifications performed on the Sprott O at-
tractor with a complex eigenvalue block diagonal matrix. The general equation
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---Slave
Master|

X, -1 -1 X

Fig. 1. Original Sprott O attractor showing synchronization between master and slave
systems (initial conditions z, = 0.1,z2 = 0.3,z3 = 0.2 and y1 = 0.4,y2 = 0.2,y3 =0.1
respectively).
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Fig. 2. Magnitude of error |e| = |y — z| between master and slave systems.

for the modified Sprott master and slave systems’ linear and non-linear parts
may be defined as follows

i =(MA)z+[00z25]", -
§=(MA)y+[00 yxys]T +u(t)

Considering the error vector e = y — z, then the error dynamics may be
written as

é=(MA)e+ L(z,y) + u(?)

with u = —L(z,y) + v and v = —(MBK)e
Defining the modifying matrix

0.9777 —0.0114 0.0224
M; = | -0.0169 0.9572 —0.0067
0.0186 —0.0142 0.9651

which was constructed using simultaneous Schur decomposition and following
the sign relationships established in Remark 2 (Since the real coefficients of the
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complex eigenvalues of A are positive). Once again we use K as in section 5.1
and u = —(MBK)e — L(z,y).

Fig. 3. Master and slave system (initial conditions z; = 0.5,z = 0.03,z3 = 0.5 and

y1 = 0.05,y2 = 0.03,y3 = 0.02 respectively) synchronization of modified Sprott O
attractor (with M, € 2p having both real and complex eigenvalues).
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Fig. 4. Magnitude of error |e| = |y — z| between master and slave systems (real and
complex eigenvalue modifications).

In Fig. 4 we have the absolute error of the master/slave system configuration,
with complex matrix perturbation, and again we see that there is an effective
convergence to zero.

Looking at the modified attractor in Fig. 3, as far as we can see, the chaotic
dynamics are preserved.

Taking into account that the control input that was applied to achieve syn-
chronization in the presented example was generated through the same method-
ology used to modify the linear part of the system and that synchronization was

achieved, we may infer robustness under multiplicative perturbations over the
linear part of nonlinear systems.
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6 Conclusions

The preservation of hyperbolic behavior in chaotic synchronization is studied
from an extension of the local stable-unstable manifold theorem based in the
preservation of the signature of the linear part of the vector fields in nonlin-
ear dynamical systems. It has been shown that a master/slave pair for which
synchronization is achieved via the use of a state feedback obtained using a
linear-quadratic regulator, synchronization may be preserved even after the mas-
ter/slave/controller system is transformed. From the results we may conclude
that the fundamental properties of the synchronization manifold, the signature
of the Jacobian Matrix, hyperbolic equilibrium points and the stability of the sys-
tem are preserved thus showing that robustness is a consequence of this method-
ology. The results can be extended to other techniques for the use of feedback

design.
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